mihaizubcopb6vp4 mihaizubcopb6vp4
  • 01-07-2018
  • Mathematics
contestada

Prove algebraically that the square of any odd number is always 1 more that a multiple of 8.

Respuesta :

konrad509
konrad509 konrad509
  • 01-07-2018
[tex](2n+1)^2=4n^2+4n+1=4n(n+1)+1[/tex]

[tex]n(n+1)[/tex] is a product of two consecutive numbers, so it's divisible by 2. Therefore, the product [tex]4n(n+1)[/tex] is divisible by [tex]4\cdot2=8[/tex]. In other words, that product is a multiple of 8. So [tex]4n(n+1)+1[/tex] is always "1 more that a multiple of 8".


Answer Link

Otras preguntas

what was an effect of the dust bowl
What did Congress charter in February 1791?​
Identify the nonrestrictive phrase in the sentence below: One morning, Bambi smelled something strange smoke from a campfire so he ran to tell the other deer. -
One angle has five times as many degrees as another angle. The greater angle has 120 degrees more than the lesser angle. How many degrees are in both angles?
identify the number as real, complex, pure imaginary. radical -9
Which molecule carries the energy produced during cellular respiration? O glucose O carbon dioxide О ATP
What does the horizontal line between the male and female represent?
Need help for geometry hw
how do to you find the x and y intercept in standard form as an ordered pair for 5x-10y=30?​
This IS a school related question: How has Trump helped or harmed the nation or yourself?